|
|
|||||||||||||||||||
|
![]() |
|
||||||||||||||||||
|
|
![]() |
|
sin2θ + cos2θ = 1 |
tan2θ + 1 = sec2θ |
sinθ/cosθ = tanθ |
cot2θ + 1 = csc2θ |
secθ = 1/cosθ |
cos(-θ) = cosθ |
cscθ = 1/sinθ |
sin(-θ) = -sinθ |
cotθ = 1/tanθ |
tan(-θ) = -tanθ |
sin(π/2-θ)=cosθ |
cos(π/2-θ)=sinθ |
sin(90°-θ)=cosθ |
cos(90°-θ)=sinθ |
sin(θ+2πk)=sinθ |
cos(θ+2πk)=cosθ |
sin2θ = 2sinθcosθ | sin2θ = (1-cos2θ)/2 |
cos2θ = cos2θ-sin2θ | cos2θ=2cos2θ-1 |
cos2θ=1-2sin2θ | cos2θ=(1+cos2θ)/2 |
tan2θ=(2tanθ)/(1-tan2θ) | cos(s/2)=+or-[(1+cos(s))/2]1/2 |
tan(s/2)=sin(s)/(1+cos(s)) | sin(s/2)=+or-[(1-cos(s))/2]1/2 |
sin(s+t)=sin(s)cos(t)+cos(s)sin(t) | sin(s-t)=sin(s)cos(t)-cos(s)sin(t) |
cos(s+t)=cos(s)cos(t)-sin(s)sin(t) | cos(s-t)=cos(s)cos(t)+sin(s)sin(t) |
tan(s+t)=(tan(s)+tan(t))/(1-tan(s)tan(t)) | tan(s-t)=(tan(s)-tan(t))/(1+tan(s)tan(t)) |
sinα+sinβ=2sin((α+β)/2)cos((α-β)/2) | sinα-sinβ= 2cos((α+β)/2)sin((α-β)/2) |
cosα+cosβ=2cos((α+β)/2)cos((α-β)/2) | cosα-cosβ=-2sin((α+β)/2)sin((α-β)/2) |
sinαsinβ=(1/2)[cos(α-β)-cos(α+β)] | sinαcosβ=(1/2)[sin(α+β)+sin(α+β)] | cosαcosβ=(1/2)[-2sin(α+β+cos(α-β)] |