James McConnel | Useful Math

Useful Mathematical Equations, Definitions and Identities

1. Trigonometry

The Unit Circle

Quad II
x<0, y>0
cosθ<0
secθ<0
sinθ>0
cscθ>0
tanθ<0
cotθ<0

Quad I
x>0, y>0
cosθ>0
secθ>0
sinθ>0
cscθ>0
tanθ>0
cotθ>0
Function Definitions
cosθ = x
secθ = x-1
sinθ = y
cscθ = y-1
tanθ = y/x
cotθ = x/y

Picture of the Unit Circle
Polar Definitions
x = rcosθ
y = rsinθ
x2 + y2 = r2
tanθ = y/x

Quad III
x<0, y<0
cosθ<0
secθ<0
sinθ<0
cscθ<0
tanθ<0
cotθ<0

Quad IV
x>0, y<0
cosθ>0
secθ>0
sinθ<0
cscθ<0
tanθ<0
cotθ<0


The Unit Triangle

Picture of the Unit Triangle
cosθ = a/h
secθ = h/a
sinθ = o/h
cscθ = h/o
tanθ = o/a
cotθ = a/o

Identities

General
sin2θ + cos2θ = 1
tan2θ + 1 = sec2θ
sinθ/cosθ = tanθ
cot2θ + 1 = csc2θ
secθ = 1/cosθ
cos(-θ) = cosθ
cscθ = 1/sinθ
sin(-θ) = -sinθ
cotθ = 1/tanθ
tan(-θ) = -tanθ
sin(π/2-θ)=cosθ
cos(π/2-θ)=sinθ
sin(90°-θ)=cosθ
cos(90°-θ)=sinθ
sin(θ+2πk)=sinθ
cos(θ+2πk)=cosθ

Double and Half angle
sin2θ = 2sinθcosθ sin2θ = (1-cos2θ)/2
cos2θ = cos2θ-sin2θ cos2θ=2cos2θ-1
cos2θ=1-2sin2θ cos2θ=(1+cos2θ)/2
tan2θ=(2tanθ)/(1-tan2θ) cos(s/2)=+or-[(1+cos(s))/2]1/2
tan(s/2)=sin(s)/(1+cos(s)) sin(s/2)=+or-[(1-cos(s))/2]1/2

Addition and Sum to Product
sin(s+t)=sin(s)cos(t)+cos(s)sin(t) sin(s-t)=sin(s)cos(t)-cos(s)sin(t)
cos(s+t)=cos(s)cos(t)-sin(s)sin(t) cos(s-t)=cos(s)cos(t)+sin(s)sin(t)
tan(s+t)=(tan(s)+tan(t))/(1-tan(s)tan(t)) tan(s-t)=(tan(s)-tan(t))/(1+tan(s)tan(t))
sinα+sinβ=2sin((α+β)/2)cos((α-β)/2) sinα-sinβ= 2cos((α+β)/2)sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)cos((α-β)/2) cosα-cosβ=-2sin((α+β)/2)sin((α-β)/2)

Product to Sum
sinαsinβ=(1/2)[cos(α-β)-cos(α+β)] sinαcosβ=(1/2)[sin(α+β)+sin(α+β)] cosαcosβ=(1/2)[-2sin(α+β+cos(α-β)]